Si-C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: optimization for implantable optical materials.

نویسندگان

  • Kristopher A Kilian
  • Till Böcking
  • Katharina Gaus
  • Michael Gal
  • J Justin Gooding
چکیده

Porous silicon has shown potential for various applications in biology and medicine, which require that the material (1) remain stable for the length of the intended application and (2) resist non-specific adsorption of proteins. Here we explore the efficacy of short oligo(ethylene glycol) moieties incorporated into organic layers via two separate strategies in achieving these aims. In the first strategy the porous silicon structure was modified in a single step via hydrosilylation of alpha-oligo(ethylene glycol)-omega-alkenes containing three or six ethylene glycol units. The second strategy employs two steps: (1) hydrosilylation of succinimidyl-10-undecenoate and (2) coupling of an amino hexa(ethylene glycol) species. The porous silicon photonic crystals modified by the two-step strategy displayed greater stability relative to the single step procedure when exposed to conditions of physiological temperature and pH. Both strategies produced layers that resist non-specific adsorption of proteins as determined with fluorescently labelled bovine serum albumin. The antifouling behaviour and greater stability to physiological conditions provided by this chemistry enhances the suitability of porous silicon for biomaterials applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical field enhancement factor of Silicon and indium phosphide nano-cavities

Nano cavities based on silicon and indium phosphide materials have been comparedin this study, considering field intensity enhancement factor. The results of FDTD based simulations declare that the Si nano-cavity improves confined optical field about 7.7 times higher than the InP based nano-cavity. The introduced dielectric nano-cavities support resonance wavelength at about λ=1.55 μm.

متن کامل

Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals

The transmissivity within the photonic band gap of two-dimensional photonic crystals of macroporous silicon is reported as a function of crystal thickness. Measurements were carried out for crystals of nominally 1, 2, 3, and 4 crystal layers using a commercial parametric source, with a wavelength tunable from 3 to 5 mm. For wavelengths well within the 3–5 mm photonic band gap, attenuation of ap...

متن کامل

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

Chemical patterning on preformed porous silicon photonic crystals: towards multiplex detection of protease activity at precise positions† †Electronic supplementary information (ESI) available: SEM images, XPS result and more optical reflectivity data. See DOI: 10.1039/c4tb00281d Click here for additional data file.

Porous silicon (PSi) rugate filters modified with alkyne-terminated monolayers were chemically patterned using a combination of photolithography of photoresist and click chemistry. Two chemical functionalities were obtained by conjugating, via click reactions, ethylene glycol moieties containing two different terminal groups to discrete areas towards the exterior of a PSi rugate filter. The pat...

متن کامل

Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals

Solvent sensitive organic/inorganic hybrid one-dimensional photonic crystals (1DPCs) were prepared through alternating thin films of poly methyl methacrylate-co-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate (PMMA-co-PHEMA-co-PEGDMA) and titania nanoparticle sol by spincoating. Since the titania layer has a higher refractive index compared with the polymer layer, an obvious photoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 28 20  شماره 

صفحات  -

تاریخ انتشار 2007